Reaction-diffusion Systems: Destabilizing Effect of Conditions given by Inclusions Ii, Examples
نویسنده
چکیده
The destabilizing effect of four different types of multivalued conditions describing the influence of semipermeable membranes or of unilateral inner sources to the reaction-diffusion system is investigated. The validity of the assumptions sufficient for the destabilization which were stated in the first part is verified for these cases. Thus the existence of points at which the spatial patterns bifurcate from trivial solutions is proved.
منابع مشابه
Reaction-diffusion Systems: Destabilizing Effect of Conditions given by Inclusions
Sufficient conditions for destabilizing effects of certain unilateral boundary conditions and for the existence of bifurcation points for spatial patterns to reaction-diffusion systems of the activator-inhibitor type are proved. The conditions are related with the mollification method employed to overcome difficulties connected with empty interiors of appropriate convex cones.
متن کاملGlobal Bifurcation for a Reaction-diffusion System with Inclusions
We consider a reaction-diffusion system exhibiting diffusion driven instability if supplemented by Dirichlet-Neumann boundary conditions. We impose unilateral conditions given by inclusions on this system and prove that global bifurcation of spatially nonhomogeneous stationary solutions occurs in the domain of parameters where bifurcation is excluded for the original mixed boundary value proble...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملMIXED VARIATIONAL INCLUSIONS INVOLVING INFINITE FAMILY OF FUZZY MAPPINGS
In this paper, we introduce and study a mixed variational inclusion problem involving infinite family of fuzzy mappings. An iterative algorithm is constructed for solving a mixed variational inclusion problem involving infinite family of fuzzy mappings and the convergence of iterative sequences generated by the proposed algorithm is proved. Some illustrative examples are also given.
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کامل